Department of Chemical Engineering

Tutorial Sheet No.1 Topics: Introduction to Chemical Kinetics

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical Engineering

Q1. A reaction has the stoichiometric equation A + B = 2R. What is the order of reaction?

- Q2. Given the reaction $2NO_2 + 0.5O_2 = N_2O_5$, what is the relation between the rates of formation and disappearance of the three reaction components?
- Q3. The pyrolysis of ethane proceeds with an activation energy of about 300 kJ/mol. How much faster is the decomposition at 650°C than at 500°C?
- Q4. An 1100-K n-nonane thermally cracks (breaks down into smaller molecules) 20 times as rapidly as at 1000 K. Find the activation energy for this decomposition.
- Q5. Show that the following scheme proposed by R. Ogg, J. Chem. Phys., 15, 337 (1947) is consistent with, and can explain, the observed first-order decomposition of N205.

$$N_2O_5 \xrightarrow[k_2]{k_1} NO_2 + NO_3^*$$

$$NO_3^* \xrightarrow{k_3} NO^* + O_2$$

$$NO^* + NO_3^* \xrightarrow{k_4} 2NO_2$$

Department of Chemical Engineering

Tutorial Sheet No.2 Topics: Introduction to Kinetics Models

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical Engineering

Q1. Experiment shows that the homogeneous decomposition of ozone proceeds with a rate

$$-r_{o3}=k [O_3]^2 [O_2]^{-1}$$

- (a) What is the overall order of reaction?
- (b) Suggest a two-step mechanism to explain this rate and state how you would further test this mechanism.
- **Q2**.On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order. For the stoichiometry $A + B \rightarrow R$ (products) find the reaction orders with respect to A and B.
- Q3. Data on the tenebrionid beetle whose body mass is 3.3 g show that it can push a 35-g ball of dung at 6.5 cm/s at 27 C, 13 cm/s at 37 C, and 18 cm/s at 40 C. How fast can it push dung at 41.5 C? [B. Heinrich. The Hot-Blooded Insects Cambridge, Mass.: 1993).]
- **Q4**. Mechanism for enzyme catalyzed reactions. To explain the kinetics of enzyme-substrate reactions, Michaelis and Menten (1913) came up with the following mechanism, which uses an equilibrium assumption

$$A + E \xrightarrow{k_1 \atop k_2} X$$

$$X \xrightarrow{k_3} R + E$$
with $K = \frac{[X]}{[A][E]}$, and with $[E_0] = [E] + [X]$

and where [E₀] represents the total enzyme and [E] represents the free unattached enzyme. G. E. Briggs and J. B. S. Haldane, Biochem J., 19, 338 (1925), on the other hand, employed a steady-state assumption in place of the equilibrium assumption

$$A + E \xrightarrow{k_1 \atop k_2} X$$

$$X \xrightarrow{k_3} R + E$$
 with $\frac{d[X]}{dt} = 0$, and $[E_0] = [E] + [X]$

What final rate form -r_A in terms of [A], [E₀], k₁, k₂and k₃ does

- (a) The Michaelis-Menten mechanism gives?
- (b) The Briggs-Haldane mechanism gives?

Department of Chemical Engineering Tutorial Sheet No.3

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical Engineering

Topic: Interpretation of Batch Reactor Data

- Q1. If $-r_A = -(dC_A/dt) = 0.2$ mol/liter.sec when $C_A = 1$ mol/liter, what is the rate of reaction when CA = 10 mol/ liter? Note: the order of reaction is not known.
- Q2. Liquid A decomposes by first-order kinetics, and in a batch reactor 50% of A is converted in a 5-minute run. How much longer would it take to reach 75% conversion?
- Q3. Repeat the previous problem for second-order kinetics.
- Q4. A 10-minute experimental run shows that 75% of liquid reactant is converted to product by a ½ order rate. What would be the fraction converted in a half-hour run?
- Q5. In a homogeneous isothermal liquid polymerization, 20% of the monomer disappears in 34 minutes for initial monomer concentration of 0.04 and also for 0.8 mol / liter. What rate equation represents the disappearance of the monomer?
- Q6. After 8 minutes in a batch reactor, reactant ($C_{AO} = 1 \text{ mol/liter}$) is 80% converted; after 18 minutes, conversion is 90%. Find a rate equation to represent this reaction.

Department of Chemical Engineering Tutorial Sheet No. 4

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical

Engineering

Topic: Design & Performance of Batch and Continuous Reactor

Q1. Consider a gas-phase reaction $2A \rightarrow R + 2$ S with unknown kinetics. If a space velocity of 1/min is needed for 90% conversion of A in a plug flow reactor, find the corresponding space-time and mean residence time or holding time of fluid in the plug flow reactor.

Q2. In an isothermal batch reactor 70% of a liquid reactant is converted in 13 min. What space-time and space-velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor?

Q3. We are planning to operate a batch reactor to convert A into R. This is a liquid reaction, the stoichiometry is $A \to R$, and the rate of reaction is given in Table . How long must we react each batch for the concentration to drop from $C_{A0}=1.3$ mol/liter to $C_{Af}=0.3$ mol/liter?

$C_{\rm A}$, mol/liter	$-r_{\rm A}$, mol/liter·min			
0.1	0.1			
0.2	0.3			
0.3	0.5			
0.4	0.6			
0.5	0.5			
0.6	0.25			
0.7	0.10			
0.8	0.06			
1.0	0.05			
1.3	0.045			
2.0	0.042			

Q4. Pure A is fed at a volumetric flow rate of 1000 dm³ /h and at a concentration of 0.005 mol/dm³ to an existing CSTR, which is connected in series to an existing tubular reactor.

If the volume of the CSTR is 1200 dm³ and the tubular reactor volume is 600 dm³, what are the intermediate and final conversions that can be achieved with the existing system? The reciprocal rate is plotted in the figure below as a function of conversion for the conditions at which the reaction is to be carried out.

Q5. Using either the data in Table, calculate the reactor volumes V_1 , V_2 , and V_3 for the CSTR/PFR/CSTR reactors in series sequence shown in Figure along with the corresponding conversion.

X	0	0.2	0.4	0.6	0.8
$-r_A(\text{mol/dm}^3.s)$	0.010	0.0091	0.008	0.005	0.002
$-1/r_A(dm^3.s/mol)$	100	110	125	200	500
$F_{A0}/-r_A (dm^3)$	200	220	250	400	1000

Department of Chemical Engineering Tutorial Sheet No.5

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical

Engineering

Topic: Design of Single reactions

- Q1. At present 90% of reactant A is converted into product by a second-order reaction in a single mixed flow reactor. We plan to place a second reactor similar to the one being used in series with it.
- (a) For the same treatment rate as that used at present, how will this addition affect the conversion of reactant?
- (b) For the same 90% conversion, by how much can the treatment rate be increased?
- **Q2**. The reactor setup consists of three plug flow reactors in two parallel branches. Branch D has a reactor of volume 60 liters followed by a reactor of volume 30 liters. Branch E has a reactor of volume 50 liters. What fraction of the feed should go to branch D?
- Q3. 100 liters/hr of radioactive fluid having a half-life of 20 hr is to be treated by passing it through two ideal stirred tanks in series, $V = 40\,000$ liters each. In passing through this system, how much will the activity decay?
- **Q4.** The kinetics of the aqueous-phase decomposition of A is investigated in two mixed flow reactors in series, the second having twice the volume of the first reactor. At steady state with a feed concentration of 1 mol A/ liter and mean residence time of 96 sec in the first reactor, the concentration in the first reactor is 0.5 mol A/ liter and in the second is 0.25 mol A/ liter. Find the kinetic equation for the decomposition.
- Q5. Using a color indicator which shows when the concentration of A falls below 0.1 mol/liter, the following scheme is devised to explore the kinetics of the decomposition of A. A feed of 0.6 mol A/liter is introduced into the first of the two mixed flow reactors in series, each having a volume of 400 cm3. The color change occurs in the first reactor for a steady-state feed rate of 10 cm³/min, and in the second reactor for a steady-state feed rate of 50 cm³/min. Find the rate equation for the decomposition of A from this information.

Department of Chemical Engineering

Tutorial Sheet No.6

Subject: Chemical Reaction Engineering-I Semester: 4th, Chemical Engineering

Topic: Recycle Reactors

- Q1. At present conversion is 2/3 for our elementary second-order liquid reaction $2A \rightarrow 2R$ when operating in an isothermal plug flow reactor with a recycle ratio of unity. What will be the conversion if the recycle stream is shut off?
- Q2. For an irreversible first-order liquid-phase reaction ($C_{A0} = 10 \text{ mol/liter}$) conversion is 90% in a plug flow reactor. If two-thirds of the stream leaving the reactor is recycled to the reactor entrance, and if the throughput to the whole reactor-recycle system is kept unchanged, what does this do to the concentration of reactant leaving the system?
- Q3. We wish to explore various reactor setups for the transformation of A into R. The feed contains 99% A, 1% R; the desired product is to consist of 10% A, 90% R. The transformation takes place by means of the elementary reaction having rate constant k = 1 liter/mol.min.

$A+R\rightarrow R+R$

The concentration of active materials is throughout. $C_{AO}+C_{RO}=C_A+C_R=C_O=1$ mol/lit. What reactor holding time will yield a product in which $C_R=0.9$ mol/liter (a) in a plug flow reactor, (b) in a mixed flow reactor, and (c) in a minimum-size setup without recycle?